Teknik Otomasi Industri

Suparno, S.Pd, M.Pd

Selasa, 05 Oktober 2010

Thyristor

00.39 0
Thyristor - SCR, TRIAC dan DIAC 

Thyristor berakar kata dari bahasa Yunani yang berarti ‘pintu'. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen yang termasuk thyristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor ), GTO (gate turn off switch), photo SCR dan sebagainya. Namun pada kesempatan ini, yang akan kemukakan adalah  komponen-komponen thyristor yang dikenal dengan sebutan SCR (silicon controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas bagaimana prinsip kerja serta aplikasinya.

Struktur Thyristor
Ciri-ciri utama dari sebuah thyristor adalah komponen yang terbuat dari bahan semiconductor silicon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen thyristor lebih digunakan sebagai saklar (switch) ketimbang sebagai penguat arus atau tegangan seperti halnya transistor. 
Struktur dasar thyristor adalah struktur 4 layer PNPN seperti yang ditunjukkan pada gambar-1a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti pada gambar-1b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan base. Jika divisualisasikan sebagai transistor Q1 dan Q2, maka struktur thyristor ini dapat diperlihatkan seperti pada gambar-2 yang berikut ini.
Terlihat di sini kolektor transistor Q1 tersambung pada base transistor Q2 dan sebaliknya kolektor transistor Q2 tersambung pada base transistor Q1.  Rangkaian transistor yang demikian menunjukkan adanya loop penguatan arus di bagian tengah. Dimana diketahui bahwa Ic = b Ib, yaitu arus kolektor adalah penguatan dari arus base. 
Jika misalnya ada arus sebesar Ib yang mengalir pada base transistor Q2, maka akan ada arus Ic yang mengalir pada kolektor Q2. Arus kolektor ini merupakan arus base Ib pada transistor Q1, sehingga akan muncul penguatan pada pada arus kolektor transistor Q1. Arus kolektor transistor Q1 tdak lain adalah arus base bagi transistor Q2. Demikian seterusnya sehingga makin lama sambungan PN dari thyristor ini di bagian tengah akan mengecil dan hilang. Tertinggal hanyalah lapisan P dan N dibagian luar. 
Jika keadaan ini tercapai, maka struktur yang demikian todak lain adalah struktur dioda PN (anoda-katoda) yang sudah dikenal. Pada saat yang demikian, disebut bahwa thyristor dalam keadaan ON dan dapat mengalirkan arus dari anoda menuju katoda seperti layaknya sebuah dioda. 
Bagaimana kalau pada thyristor ini kita beri beban lampu dc dan diberi suplai tegangan dari nol sampai tegangan tertentu seperti pada gambar 3. Apa yang terjadi pada lampu ketika tegangan dinaikkan dari nol. Ya betul, tentu saja lampu akan tetap padam karena lapisan N-P yang ada ditengah akan mendapatkan reverse-bias (teori dioda). Pada saat ini disebut thyristor dalam keadaan OFF karena tidak ada arus yang bisa mengalir atau sangat kecil sekali. Arus tidak dapat mengalir sampai pada suatu tegangan reverse-bias tertentu yang menyebabkan sambungan NP ini jenuh dan hilang. Tegangan ini disebut tegangan breakdown dan pada saat itu arus mulai dapat mengalir melewati thyristor sebagaimana dioda umumnya. Pada thyristor tegangan ini disebut tegangan breakover Vbo.
SCR
Telah dibahas, bahwa untuk membuat thyristor menjadi ON adalah dengan memberi arus trigger lapisan P yang dekat dengan katoda. Yaitu dengan membuat kaki gate pada thyristor PNPN seperti pada gambar-4a. Karena letaknya yang dekat dengan katoda, bisa juga pin gate ini disebut pin gate katoda (cathode gate). Beginilah SCR dibuat dan simbol SCR digambarkan seperti gambar-4b. SCR dalam banyak literatur disebut Thyristor saja.
Melalui kaki (pin) gate tersebut memungkinkan komponen ini di trigger menjadi ON, yaitu dengan memberi arus gate.  Ternyata dengan memberi arus gate Ig yang semakin besar dapat menurunkan tegangan breakover (Vbo) sebuah SCR. Dimana tegangan ini adalah tegangan minimum yang diperlukan SCR untuk menjadi ON. Sampai pada suatu besar arus gate tertentu, ternyata akan sangat mudah membuat SCR menjadi ON. Bahkan dengan tegangan forward yang kecil sekalipun. Misalnya 1 volt saja atau lebih kecil lagi. Kurva tegangan dan arus dari sebuah SCR adalah seperti yang ada pada gambar-5 yang berikut ini.




Pada gambar tertera tegangan breakover Vbo, yang jika tegangan forward SCR mencapai titik ini, maka SCR akan ON. Lebih penting lagi adalah arus Ig yang dapat menyebabkan tegangan Vbo turun menjadi lebih kecil. Pada gambar ditunjukkan beberapa arus Ig dan korelasinya terhadap tegangan breakover. Pada datasheet SCR, arus trigger gate ini sering ditulis dengan notasi IGT (gate trigger current). Pada gambar ada ditunjukkan juga arus Ih yaitu arus holding yang mempertahankan SCR tetap ON. Jadi agar SCR tetap ON maka arus forward dari anoda menuju katoda harus berada di atas parameter ini.
Sejauh ini yang dikemukakan adalah bagaimana membuat SCR menjadi ON. Pada kenyataannya, sekali SCR mencapai keadaan ON maka selamanya akan ON, walaupun tegangan gate dilepas atau di short ke katoda. Satu-satunya cara untuk membuat SCR menjadi OFF adalah dengan membuat arus anoda-katoda turun dibawah arus Ih (holding current). Pada gambar-5 kurva I-V SCR, jika arus forward berada dibawah titik Ih, maka SCR kembali pada keadaan OFF. Berapa besar arus holding ini, umumnya ada di dalam datasheet SCR. 
Cara membuat SCR menjadi OFF tersebut adalah sama saja dengan menurunkan tegangan anoda-katoda ke titik nol. Karena inilah SCR atau thyristor pada umumnya tidak cocok digunakan untuk aplikasi DC. Komponen ini lebih banyak digunakan untuk aplikasi-aplikasi tegangan AC, dimana SCR bisa OFF pada saat gelombang tegangan AC berada di titik nol.
Ada satu parameter penting lain dari SCR, yaitu VGT. Parameter ini adalah tegangan trigger pada gate yang menyebabkab SCR ON. Kalau dilihat dari model thyristor pada gambar-2, tegangan ini adalah tegangan Vbe pada transistor Q2. VGT seperti halnya Vbe, besarnya kira-kira 0.7 volt. Seperti contoh rangkaian gambar-8 berikut ini sebuah SCR diketahui memiliki IGT = 10 mA dan VGT = 0.7 volt. Maka dapat dihitung tegangan Vin yang diperlukan agar SCR ini ON adalah sebesar :
Vin = Vr + VGT
Vin = IGT(R) + VGT = 4.9 volt  

TRIAC
Boleh dikatakan SCR adalah thyristor yang uni-directional, karena ketika ON hanya bisa melewatkan arus satu arah saja yaitu dari anoda menuju katoda. Struktur TRIAC sebenarnya adalah sama dengan dua buah SCR yang arahnya bolak-balik dan kedua gate-nya disatukan. Simbol TRIAC ditunjukkan pada gambar-6. TRIAC biasa juga disebut thyristor bi-directional.

TRIAC bekerja mirip seperti SCR yang paralel bolak-balik, sehingga dapat melewatkan arus dua arah. Kurva karakteristik dari TRIAC adalah seperti pada gambar-7 berikut ini.

Pada datasheet akan lebih detail diberikan besar parameter-parameter seperti  Vbo dan -Vbo, lalu IGT dan -IGT, Ih serta -Ih dan sebagainya. Umumnya besar parameter ini simetris antara yang plus dan yang minus. Dalam perhitungan desain, bisa dianggap parameter ini simetris sehingga lebih mudah di hitung.
DIAC
Kalau dilihat strukturnya seperti gambar-8a, DIAC bukanlah termasuk keluarga thyristor, namun prisip kerjanya membuat ia digolongkan sebagai thyristor. DIAC dibuat dengan struktur PNP mirip seperti transistor. Lapisan N pada transistor dibuat sangat tipis sehingga elektron dengan mudah dapat menyeberang menembus lapisan ini. Sedangkan pada DIAC, lapisan N di buat cukup tebal sehingga elektron cukup sukar untuk menembusnya. Struktur DIAC yang demikian dapat juga dipandang sebagai dua buah dioda PN dan NP, sehingga dalam beberapa literatur DIAC digolongkan sebagai dioda.
Sukar dilewati oleh arus dua arah, DIAC memang dimaksudkan untuk tujuan ini. Hanya dengan tegangan breakdown tertentu barulah DIAC dapat menghantarkan arus. Arus yang dihantarkan tentu saja bisa bolak-balik dari anoda menuju katoda dan sebaliknya. Kurva karakteristik DIAC sama seperti TRIAC, tetapi yang hanya perlu diketahui adalah berapa tegangan breakdown-nya. 
Simbol dari DIAC adalah seperti yang ditunjukkan pada gambar-8b. DIAC umumnya dipakai sebagai pemicu TRIAC agar ON pada tegangan input tertentu yang relatif tinggi. Contohnya adalah aplikasi dimmer lampu yang berikut pada gambar-9.
Jika diketahui IGT dari TRIAC pada rangkaian di atas 10 mA dan VGT = 0.7 volt. Lalu diketahui juga yang digunakan adalah sebuah DIAC dengan Vbo = 20 V, maka dapat dihitung TRIAC akan ON pada tegangan :
V = IGT(R)+Vbo+VGT = 120.7 V



Pada rangkaian dimmer, resistor R biasanya diganti dengan rangkaian seri resistor dan potensiometer. Di sini kapasitor C bersama rangkaian R digunakan untuk menggeser phasa tegangan VAC. Lampu dapat diatur menyala redup dan terang, tergantung pada saat kapan TRIAC di picu.
--ooo--











Transformator

00.38 0

 Pengertian Transformator

  • Dikenal dengan istilah trafo, adalah suatu alat elektronik yang memindahkan energi dari satu sirkuit elektronik ke sirkuit lainnya melalui pasangan magnet. Biasanya dipakai untuk mengubah tegangan listrik dari tinggi ke rendah dan berarti juga mengubah arus listrik dari rendah ke tinggi.
  • Peralatan pengubah tegangan listrik. Istilah ini berasal dari kata transformator.

Rangkaian Dioda: Penyearah Tegangan


Sebagai penyearah tegangan, dioda digunakan untuk mengubah tegangan bolak-balik (AC) menjadi tegangan searah(DC). Penyearah tegangan ini ada 2 macam, yaitu :
1. Penyearah setengah gelombang (half-wave rectifier)
2. Penyearah gelombang penuh (full-wave rectifier)

1. Penyearah setengah gelombang (half-wave rectifier)
Saat digunakan sebagai penyearah setengah gelombang, dioda menyearahkan tegangan AC yang berbentuk gelombang sinus menjadi tegangan DC hanya selama siklus positif tegangan AC saja. Sedangkan pada saat siklus negatifnya, dioda mengalami panjaran balik (reverse bias) sehingga tegangan beban (output) menjadi nol.

Pada contoh diatas, anggaplah Vin sebagai tegangan input rangkaian setelah diturunkan oleh transformator yang mempunyai nilai sebesar 20Vpp atau 7,071VRMS. Setelah disearahkan menggunakan dioda maka akan di dapat nilai tegangan DC atau nilai rata-ratanya.

  Dari hasil simulasi dengan contoh perhitungan diatas terlihat bahwa terdapat perbedaan nilai. Hal ini bisa disebabkan karena komponen pada simulasi tidak ideal dan ini juga bisa terjadi pada percobaan secara langsung. Nilai tegangan yang ditunjukkan pada multimeter adalah nilai komponen AC (VAC) atau DC (VDC) saja. Sementara, untuk mengetahui tegangan puncak ke puncak (Vpp) diperlukan pengukuran menggunakan osiloskop atau bisa juga dengan perhitungan setelah VAC sudah diketahui.
Catatan : VAC = VRMS = VEFEKTIF

2. Penyearah gelombang penuh (full-wave rectifier)
Saat digunakan sebagai penyearah gelombang penuh, dioda secara bergantian menyearahkan tegangan AC pada saat siklus positif dan negatif. Penyearah gelombang penuh ada 2 macam dan penggunaannya disesuaikan dengan transformator yang dipakai. Untuk transformator biasa digunakan jembatan dioda (dioda bridge) sementara untuk transformator CT digunakan 2 dioda saja sebagai penyearahnya.
a. Penyearah gelombang penuh dengan jembatan dioda (dioda bridge)
Pada dioda bridge, hanya ada 2 dioda saja yang menghantarkan arus untuk setiap siklus tegangan AC sedangkan 2 dioda lainnya bersifat sebagai isolator pada saat siklus yang sama. Untuk memahami cara kerja dioda bridge, perhatikanlah kedua gambar berikut.


Saat siklus positif tegangan AC, arus mengalir melalui dioda B menuju beban dan kembali melalui dioda C. Pada saat yang bersamaan pula, dioda A dan D mengalami reverse bias sehingga tidak ada arus yg mengalir atau kedua dioda tersebut bersifat sebagai isolator.


Sedangkan pada saat siklus negatif tegangan AC, arus mengalir melalui dioda D menuju beban dan kembali melalui dioda A. Karena dioda B dan C mengalami reverse bias maka arus tidak dapat mengalir pada kedua dioda ini.

Kedua hal ini terjadi berulang secara terus menerus hingga didapatkan tegangan beban yang berbentuk gelombang penuh yang sudah disearahkan (tegangan DC). Grafik sinyal dari penyearah gelombang penuh dengan jembatan dioda (dioda bridge) ditunjukkan seperti pada gambar berikut


Jembatan dioda (dioda bridge) tersedia dalam bentuk 1 komponen saja atau pun bisa dibuat dengan menggunakan 4 dioda yang sama karakteristiknya. Yang harus diperhatikan adalah besar arus yang dilewatkan oleh dioda harus lebih besar dari besar arus yang dilewatkan pada rangkaian.

b. Penyearah gelombang penuh menggunakan 2 dioda
Seperti telah disebutkan diatas, penyearah gelombang penuh menggunakan 2 dioda ini hanya bisa digunakan pada transformator CT, dimana tegangan sekunder yang dihasilkan oleh trafo CT ini adalah :
dimana V1=teg primer dan V2=teg sekunder
Cara kerja penyearah gelombang penuh jenis ini dapat dijelaskan seperti berikut :
 
Pada artikel mengenai trafo diketahui bahwa pada bagian sekunder trafo CT terdapat 2 sinyal output yang terjadi secara bersamaan, mempunyai amplitudo yang sama namun berlawanan fasa. Saat tegangan input (teg primer) berada pada siklus positif, pada titik AO akan terjadi siklus positif sementara pada titik OB akan terjadi siklus negatif. Akibatnya D1 akan mengalami panjaran maju (forward bias) sedangkan D2 mengalami panjaran balik (reverse bias) sehingga arus akan mengalir melalui D1 menuju ke beban dan kembali ke titik center tap.
 
Saat tegangan input (teg primer) berada pada siklus negatif, pada titik AO akan terjadi siklus negatif sementara pada titik OB akan terjadi siklus positif. Akibatnya D2 akan mengalami panjaran maju (forward bias) sedangkan D1 mengalami panjaran balik (reverse bias) sehingga arus akan mengalir melalui D2 menuju ke beban dan kembali ke titik center tap.

Dari penjelasan cara kerja penyearah gelombang penuh jenis ini terlihat bahwa tegangan yang terjadi pada beban mempunyai polaritas yang sama tanpa memperdulikan dioda mana yang menghantar karena arus mengalir melalui arah yang sama sehingga akan terbentuk gelombang penuh yang disearahkan seperti ditunjukkan pada grafik sinyal berikut.

 


 

Dioda

00.37 0
Dioda
jshoirujpwoiep[w

Transistor

00.37 0
Transistor
iuyosifdupso

Kondensator

00.19 0
Kondensator

Kondensator elektrolit

Kondensator elektrolit atau Electrolytic Condenser (sering disingkat Elco) adalah kondensator yang biasanya berbentuk tabung, mempunyai dua kutub kaki berpolaritas positif dan negatif, ditandai oleh kaki yang panjang positif sedangkan yang pendek negatif atau yang dekat tanda minus ( - ) adalah kaki negatif. Nilai kapasitasnya dari 0,47 µF (mikroFarad) sampai ribuan mikroFarad dengan voltase kerja dari beberapa volt hingga ribuan volt.
Berbagai macam lambang gambar untuk Kapasitor Elektrolit pada skema elektronika :
 
Polarized capacitor symbol alternative.svg
Polarized capacitor symbol 2.svg
Polarized capacitor symbol 3.svg
Polarized capacitor symbol 4.svg
Elektrolytkondensator.JPG
Tampak pada gambar diatas polaritas negatif pada kaki Kondensator Elektrolit.
Selain kondensator elektrolit yang mempunyai polaritas pada kakinya, ada juga kondensator yang berpolaritas yaitu kondensator solid tantalum.
Kerusakan umum pada kondensator elektrolit di antaranya adalah:
  • Kering (kapasitasnya berubah)
  • Konsleting
  • Meledak, yang dikarenakan salah dalam pemberian tegangan positif dan negatifnya, jika batas maksimum voltase dilampaui juga bisa meledak.

Senin, 04 Oktober 2010

Resistor dan Kode warna

23.53 0

Resistor Color Code Identification


  Meskipun kode yang paling sering dikaitkan dengan resistor, kemudian juga dapat berlaku untuk kapasitor dan komponen lainnya.

  Warna standar metode pengkodean untuk resistor menggunakan warna yang berbeda untuk mewakili setiap nomor 0 sampai 9: hitam, coklat, merah, oranye, kuning, hijau, biru, ungu, abu-abu, putih. Pada resistor band 4, band dua yang pertama merupakan digit signifikan. Pada band 5 dan 6, tiga pertama band adalah angka signifikan.
Band berikutnya merupakan "dekade" multiplier atau. Seperti pada contoh 4 band di atas, dua yang pertama band merah dan ungu, mewakili 2 dan 7. Band ketiga adalah jeruk, mewakili 3 berarti 103 atau 1000. Ini memberikan nilai 27, * 1000 atau 27000 Ohms. Emas dan perak band dekade bagi dengan kekuatan 10, memungkinkan untuk nilai di bawah 10 Ohms. Para 5 dan 6 band resistor bekerja persis sama dengan resistor band 4. Mereka hanya menambahkan satu digit lebih signifikan. Band setelah dekade ini adalah toleransi. Ini menceritakan bagaimana perlawanan akurat dibandingkan dengan spesifikasinya. Resistor band 4 memiliki toleransi emas, atau 5%, yang berarti bahwa nilai sebenarnya dari resistor bisa 5% lebih atau kurang dari 27.000 ohm, sehingga nilai antara 25.650-28.350 Ohms. Band terakhir pada sebuah resistor band 6 adalah koefisien suhu dari resistor, diukur dalam PPM / C atau bagian per juta per derajat Celcius. Brown (100 PPM / C) yang paling populer, dan akan bekerja untuk sebagian besar kondisi suhu masuk akal. Yang lain secara khusus dirancang untuk aplikasi kritis suhu. 

 Alpha-Numeric Code Identification


Dengan ukuran resistor dan komponen lainnya menyusut atau berubah bentuk, maka semakin sulit untuk cocok semua band warna pada sebuah resistor. Oleh karena itu, alfanumerik sederhana sistem pengkodean yang digunakan. Metode ini menggunakan tiga angka, kadang-kadang diikuti oleh satu huruf. Angka-angka mewakili sama dengan tiga band pertama pada sebuah resistor band 4. Pada jaringan SIL atas, 4 dan 7 adalah angka signifikan dan 3 adalah dekade, memberikan 47 x 1000 atau 47.000 Ohm. Surat setelah angka adalah toleransi. Representasi yang berbeda adalah: M = ± 20%, K = ± 10%, J = ± 5%, G = ± 2%, F = ± 1%.

Konvensi Penamaan

  Untuk mempermudah penulisan nilai resistor besar, singkatan K dan M digunakan selama seribu dan satu juta. Untuk menjaga standar konvensi, R digunakan untuk mewakili 0. Karena masalah dalam melihat titik desimal dalam beberapa teks tercetak, 3 huruf: KM atau R digunakan di tempat titik desimal. Dengan demikian, sebuah resistor 2.700 Ohm ditulis 2k7 dan sebuah resistor 6,8 Ohm ditulis 6R8.

Kisaran E12

  Ini mengidentifikasi berbagai resistor yang dikenal sebagai "nilai-nilai pilihan". Dalam rentang E12 terdapat 12 nilai resistor "disukai" atau "dasar", dan semua yang lainnya hanya dekade nilai-nilai ini:

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8 dan 8.2


  Tabel di bawah ini daftar setiap nilai resistor dari berbagai E12 nilai disukai. Anda akan melihat bahwa ada 12 baris yang mengandung nilai-nilai resistor dasar, dan kolom dekade daftar nilai-nilai tersebut. Rentang ini paling sering meliputi resistor film karbon standar, yang tidak tersedia di nilai di atas 10 Megohms - 10M.

 Kisaran E24
Kisaran E24 nilai pilihan mencakup semua nilai E12, ditambah 12 lebih lanjut untuk memungkinkan pemilihan resistensi yang lebih presisi. Dalam rentang E24 nilai disukai adalah:
1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2 dan 9.1
  Tabel di bawah ini daftar setiap nilai resistor dari berbagai E24 nilai disukai. Anda akan melihat bahwa ada 24 baris yang mengandung nilai-nilai resistor dasar dan kolom kanan ke daftar dekade nilai-nilai tersebut. Rentang ini paling sering meliputi resistor film logam yang tidak tersedia di nilai di atas 1 megom - 1M0.


 Ada juga E48 dan E96 tabel, yang memiliki nilai bahkan lebih. Resistor dalam kelompok-kelompok ini kurang umum dan cenderung memiliki tingkat toleransi yang lebih baik.
  
Tabel di bawah ini menunjukkan kode warna untuk E12 dan nilai-nilai disukai E24. Perhatikan bagaimana kedua pertama warna dalam setiap baris adalah sama, dan warna terakhir di setiap kolom adalah sama. Setiap kolom satu dekade, dan setiap baris dalam kolom yang satu berbeda dari nilai-nilai E24.





Simulator Kode warna Resistor silahkan download di sini